
enclosed by the Gaussian box reside on an area A of the xy-plane. Hence,

(6.12)qenc = σ0 A.

Using the equations for the flux and enclosed charge in Gauss’s law, we can immediately determine the electric field at a
point at height z from a uniformly charged plane in the xy-plane:

E→ P = σ0
2ε0

n̂ .

The direction of the field depends on the sign of the charge on the plane and the side of the plane where the field point P is

located. Note that above the plane, n̂ = + ẑ , while below the plane, n̂ = − ẑ .

You may be surprised to note that the electric field does not actually depend on the distance from the plane; this is an effect
of the assumption that the plane is infinite. In practical terms, the result given above is still a useful approximation for finite
planes near the center.

6.4 | Conductors in Electrostatic Equilibrium

Learning Objectives

By the end of this section, you will be able to:

• Describe the electric field within a conductor at equilibrium

• Describe the electric field immediately outside the surface of a charged conductor at
equilibrium

• Explain why if the field is not as described in the first two objectives, the conductor is not at
equilibrium

So far, we have generally been working with charges occupying a volume within an insulator. We now study what happens
when free charges are placed on a conductor. Generally, in the presence of a (generally external) electric field, the free
charge in a conductor redistributes and very quickly reaches electrostatic equilibrium. The resulting charge distribution and
its electric field have many interesting properties, which we can investigate with the help of Gauss’s law and the concept of
electric potential.

The Electric Field inside a Conductor Vanishes
If an electric field is present inside a conductor, it exerts forces on the free electrons (also called conduction electrons),
which are electrons in the material that are not bound to an atom. These free electrons then accelerate. However, moving
charges by definition means nonstatic conditions, contrary to our assumption. Therefore, when electrostatic equilibrium is
reached, the charge is distributed in such a way that the electric field inside the conductor vanishes.

If you place a piece of a metal near a positive charge, the free electrons in the metal are attracted to the external positive
charge and migrate freely toward that region. The region the electrons move to then has an excess of electrons over the
protons in the atoms and the region from where the electrons have migrated has more protons than electrons. Consequently,
the metal develops a negative region near the charge and a positive region at the far end (Figure 6.34). As we saw in
the preceding chapter, this separation of equal magnitude and opposite type of electric charge is called polarization. If you
remove the external charge, the electrons migrate back and neutralize the positive region.
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Figure 6.34 Polarization of a metallic sphere by an external
point charge +q . The near side of the metal has an opposite

surface charge compared to the far side of the metal. The sphere
is said to be polarized. When you remove the external charge,
the polarization of the metal also disappears.

The polarization of the metal happens only in the presence of external charges. You can think of this in terms of electric
fields. The external charge creates an external electric field. When the metal is placed in the region of this electric field,
the electrons and protons of the metal experience electric forces due to this external electric field, but only the conduction
electrons are free to move in the metal over macroscopic distances. The movement of the conduction electrons leads to the
polarization, which creates an induced electric field in addition to the external electric field (Figure 6.35). The net electric
field is a vector sum of the fields of +q and the surface charge densities −σA and +σB. This means that the net field

inside the conductor is different from the field outside the conductor.

Figure 6.35 In the presence of an external charge q, the
charges in a metal redistribute. The electric field at any point has
three contributions, from +q and the induced charges −σA
and +σB. Note that the surface charge distribution will not be

uniform in this case.

The redistribution of charges is such that the sum of the three contributions at any point P inside the conductor is

E→ P = E→ q + E→ B + E→ A = 0
→

.

Now, thanks to Gauss’s law, we know that there is no net charge enclosed by a Gaussian surface that is solely within the
volume of the conductor at equilibrium. That is, qenc = 0 and hence

(6.13)E→ net = 0
→

(at points inside a conductor).

Charge on a Conductor
An interesting property of a conductor in static equilibrium is that extra charges on the conductor end up on the outer
surface of the conductor, regardless of where they originate. Figure 6.36 illustrates a system in which we bring an external
positive charge inside the cavity of a metal and then touch it to the inside surface. Initially, the inside surface of the cavity is
negatively charged and the outside surface of the conductor is positively charged. When we touch the inside surface of the
cavity, the induced charge is neutralized, leaving the outside surface and the whole metal charged with a net positive charge.
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Figure 6.36 Electric charges on a conductor migrate to the outside surface no
matter where you put them initially.

To see why this happens, note that the Gaussian surface in Figure 6.37 (the dashed line) follows the contour of the actual
surface of the conductor and is located an infinitesimal distance within it. Since E = 0 everywhere inside a conductor,

∮
s

E→ · n̂dA = 0.

Thus, from Gauss’s law, there is no net charge inside the Gaussian surface. But the Gaussian surface lies just below the
actual surface of the conductor; consequently, there is no net charge inside the conductor. Any excess charge must lie on its
surface.

Figure 6.37 The dashed line represents a Gaussian surface
that is just beneath the actual surface of the conductor.

This particular property of conductors is the basis for an extremely accurate method developed by Plimpton and Lawton
in 1936 to verify Gauss’s law and, correspondingly, Coulomb’s law. A sketch of their apparatus is shown in Figure 6.38.
Two spherical shells are connected to one another through an electrometer E, a device that can detect a very slight amount
of charge flowing from one shell to the other. When switch S is thrown to the left, charge is placed on the outer shell by the
battery B. Will charge flow through the electrometer to the inner shell?

No. Doing so would mean a violation of Gauss’s law. Plimpton and Lawton did not detect any flow and, knowing the

sensitivity of their electrometer, concluded that if the radial dependence in Coulomb’s law were 1/r (2 + δ)
, δ would be less

than 2 × 10−9 [1]. More recent measurements place δ at less than 3 × 10−16 [2], a number so small that the validity of

Coulomb’s law seems indisputable.

1. S. Plimpton and W. Lawton. 1936. “A Very Accurate Test of Coulomb’s Law of Force between Charges.” Physical
Review 50, No. 11: 1066, doi:10.1103/PhysRev.50.1066
2. E. Williams, J. Faller, and H. Hill. 1971. “New Experimental Test of Coulomb’s Law: A Laboratory Upper Limit on
the Photon Rest Mass.” Physical Review Letters 26 , No. 12: 721, doi:10.1103/PhysRevLett.26.721
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Figure 6.38 A representation of the apparatus used by Plimpton and Lawton.
Any transfer of charge between the spheres is detected by the electrometer E.

The Electric Field at the Surface of a Conductor
If the electric field had a component parallel to the surface of a conductor, free charges on the surface would move, a
situation contrary to the assumption of electrostatic equilibrium. Therefore, the electric field is always perpendicular to the
surface of a conductor.

At any point just above the surface of a conductor, the surface charge density σ and the magnitude of the electric field E

are related by

(6.14)E = σ
ε0

.

To see this, consider an infinitesimally small Gaussian cylinder that surrounds a point on the surface of the conductor, as
in Figure 6.39. The cylinder has one end face inside and one end face outside the surface. The height and cross-sectional
area of the cylinder are δ and ΔA , respectively. The cylinder’s sides are perpendicular to the surface of the conductor, and

its end faces are parallel to the surface. Because the cylinder is infinitesimally small, the charge density σ is essentially

constant over the surface enclosed, so the total charge inside the Gaussian cylinder is σΔA . Now E is perpendicular to the

surface of the conductor outside the conductor and vanishes within it, because otherwise, the charges would accelerate, and
we would not be in equilibrium. Electric flux therefore crosses only the outer end face of the Gaussian surface and may be
written as EΔA , since the cylinder is assumed to be small enough that E is approximately constant over that area. From

Gauss’ law,

EΔA = σΔA
ε0

.

Thus,

E = σ
ε0

.
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Figure 6.39 An infinitesimally small cylindrical Gaussian surface surrounds point P, which is on the surface of

the conductor. The field E→ is perpendicular to the surface of the conductor outside the conductor and vanishes

within it.

Example 6.9

Electric Field of a Conducting Plate

The infinite conducting plate in Figure 6.40 has a uniform surface charge density σ . Use Gauss’ law to find the

electric field outside the plate. Compare this result with that previously calculated directly.

Figure 6.40 A side view of an infinite conducting plate and
Gaussian cylinder with cross-sectional area A.
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Strategy

For this case, we use a cylindrical Gaussian surface, a side view of which is shown.

Solution

The flux calculation is similar to that for an infinite sheet of charge from the previous chapter with one major

exception: The left face of the Gaussian surface is inside the conductor where E→ = 0
→

, so the total flux

through the Gaussian surface is EA rather than 2EA. Then from Gauss’ law,

EA = σA
ε0

and the electric field outside the plate is

E = σ
ε0

.

Significance

This result is in agreement with the result from the previous section, and consistent with the rule stated above.

Example 6.10

Electric Field between Oppositely Charged Parallel Plates

Two large conducting plates carry equal and opposite charges, with a surface charge density σ of magnitude

6.81 × 10−7 C/m2, as shown in Figure 6.41. The separation between the plates is l = 6.50 mm . What is the

electric field between the plates?

Figure 6.41 The electric field between oppositely charged
parallel plates. A test charge is released at the positive plate.
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Strategy

Note that the electric field at the surface of one plate only depends on the charge on that plate. Thus, apply
E = σ/ε0 with the given values.

Solution

The electric field is directed from the positive to the negative plate, as shown in the figure, and its magnitude is
given by

E = σ
ε0

= 6.81 × 10−7 C/m2

8.85 × 10−12 C2 /N m2 = 7.69 × 104 N/C.

Significance

This formula is applicable to more than just a plate. Furthermore, two-plate systems will be important later.

Example 6.11

A Conducting Sphere

The isolated conducting sphere (Figure 6.42) has a radius R and an excess charge q. What is the electric field
both inside and outside the sphere?

Figure 6.42 An isolated conducting sphere.

Strategy

The sphere is isolated, so its surface change distribution and the electric field of that distribution are spherically

symmetrical. We can therefore represent the field as E→ = E(r) r̂ . To calculate E(r), we apply Gauss’s law over

a closed spherical surface S of radius r that is concentric with the conducting sphere.

Solution

Since r is constant and n̂ = r̂ on the sphere,

∮
S

E→ · n̂ dA = E(r)∮
S

dA = E(r) 4πr2.

For r < R , S is within the conductor, so qenc = 0, and Gauss’s law gives

E(r) = 0,
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6.6

as expected inside a conductor. If r > R , S encloses the conductor so qenc = q. From Gauss’s law,

E(r) 4πr2 = q
ε0

.

The electric field of the sphere may therefore be written as

E→ = 0
→

(r < R),

E→ = 1
4πε0

q
r2 r̂ (r ≥ R).

Significance

Notice that in the region r ≥ R , the electric field due to a charge q placed on an isolated conducting sphere of

radius R is identical to the electric field of a point charge q located at the center of the sphere. The difference
between the charged metal and a point charge occurs only at the space points inside the conductor. For a point
charge placed at the center of the sphere, the electric field is not zero at points of space occupied by the sphere,
but a conductor with the same amount of charge has a zero electric field at those points (Figure 6.43). However,
there is no distinction at the outside points in space where r > R , and we can replace the isolated charged

spherical conductor by a point charge at its center with impunity.

Figure 6.43 Electric field of a positively charged metal
sphere. The electric field inside is zero, and the electric field
outside is same as the electric field of a point charge at the
center, although the charge on the metal sphere is at the surface.

Check Your Understanding How will the system above change if there are charged objects external to
the sphere?

For a conductor with a cavity, if we put a charge +q inside the cavity, then the charge separation takes place in the

conductor, with −q amount of charge on the inside surface and a +q amount of charge at the outside surface (Figure

6.44(a)). For the same conductor with a charge +q outside it, there is no excess charge on the inside surface; both the

positive and negative induced charges reside on the outside surface (Figure 6.44(b)).
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Figure 6.44 (a) A charge inside a cavity in a metal. The distribution of charges
at the outer surface does not depend on how the charges are distributed at the
inner surface, since the E-field inside the body of the metal is zero. That
magnitude of the charge on the outer surface does depend on the magnitude of the
charge inside, however. (b) A charge outside a conductor containing an inner
cavity. The cavity remains free of charge. The polarization of charges on the
conductor happens at the surface.

If a conductor has two cavities, one of them having a charge +qa inside it and the other a charge −qb, the polarization

of the conductor results in −qa on the inside surface of the cavity a, +qb on the inside surface of the cavity b, and

qa − qb on the outside surface (Figure 6.45). The charges on the surfaces may not be uniformly spread out; their spread

depends upon the geometry. The only rule obeyed is that when the equilibrium has been reached, the charge distribution in
a conductor is such that the electric field by the charge distribution in the conductor cancels the electric field of the external
charges at all space points inside the body of the conductor.

Figure 6.45 The charges induced by two equal and opposite
charges in two separate cavities of a conductor. If the net charge
on the cavity is nonzero, the external surface becomes charged
to the amount of the net charge.

Chapter 6 | Gauss's Law 273




